翻訳と辞書 |
Friedrichs' inequality : ウィキペディア英語版 | Friedrichs' inequality In mathematics, Friedrichs' inequality is a theorem of functional analysis, due to Kurt Friedrichs. It places a bound on the ''Lp'' norm of a function using ''Lp'' bounds on the weak derivatives of the function and the geometry of the domain, and can be used to show that certain norms on Sobolev spaces are equivalent. ==Statement of the inequality==
Let Ω be a bounded subset of Euclidean space R''n'' with diameter ''d''. Suppose that ''u'' : Ω → R lies in the Sobolev space (i.e. ''u'' lies in ''W''''k'',''p''(Ω) and the trace of ''u'' is zero). Then : In the above * denotes the ''Lp'' norm; * ''α'' = (''α''1, ..., ''α''''n'') is a multi-index with norm |''α''| = ''α''1 + ... + ''α''''n''; * Dα''u'' is the mixed partial derivative ::
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Friedrichs' inequality」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|