翻訳と辞書
Words near each other
・ Friedrich-Wilhelm Otte
・ Friedrich-Wilhelm Richter
・ Friedrich-Wilhelm Tebbe
・ Friedrich-Wilhelm Thorwest
・ Friedrich-Wilhelm Ulrich
・ Friedrich-Wilhelm von Chappuis
・ Friedrich-Wilhelm von Loeper
・ Friedrich-Wilhelm von Rothkirch und Panthen
・ Friedrich-Wilhelm Wangerin
・ Friedrich-Wilhelm Wichmann
・ Friedrich-Wilhelm-Lübke-Koog
・ Friedrich-Wilhelm-Platz (Berlin U-Bahn)
・ Friedrichroda
・ Friedrichroda Railway
・ Friedrichs extension
Friedrichs' inequality
・ Friedrichsaue
・ Friedrichsbau (Stuttgart)
・ Friedrichsberg (Lower Bavaria)
・ Friedrichsberg station
・ Friedrichsbrunn
・ Friedrichsburg
・ Friedrichsdorf
・ Friedrichsdorf (disambiguation)
・ Friedrichsdorf station
・ Friedrichsfeld (Niederrhein) station
・ Friedrichsfelde
・ Friedrichsfelde (Berlin U-Bahn)
・ Friedrichsgabekoog
・ Friedrichsgraben


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Friedrichs' inequality : ウィキペディア英語版
Friedrichs' inequality
In mathematics, Friedrichs' inequality is a theorem of functional analysis, due to Kurt Friedrichs. It places a bound on the ''Lp'' norm of a function using ''Lp'' bounds on the weak derivatives of the function and the geometry of the domain, and can be used to show that certain norms on Sobolev spaces are equivalent.
==Statement of the inequality==

Let Ω be a bounded subset of Euclidean space R''n'' with diameter ''d''. Suppose that ''u'' : Ω → R lies in the Sobolev space W_^ (\Omega) (i.e. ''u'' lies in ''W''''k'',''p''(Ω) and the trace of ''u'' is zero). Then
:\| u \|_ \leq d^ \left( \sum_ \| \mathrm^ u \|_^ \right)^.
In the above
* \| \cdot \|_ denotes the ''Lp'' norm;
* ''α'' = (''α''1, ..., ''α''''n'') is a multi-index with norm |''α''| = ''α''1 + ... + ''α''''n'';
* Dα''u'' is the mixed partial derivative
::\mathrm^ u = \frac} \cdots \partial_} }.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Friedrichs' inequality」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.